
C. Zeitnitz September 2014

WaveIO Version 1.01
A Soundcard interface for LabView

C. Zeitnitz

© C. Zeitnitz 2005-2014
Web-page: http://www.zeitnitz.eu/waveio

1. Introduction
The WaveIO package consists of a DLL and a set of interface LabView VIs to access the
different functions of the package. In addition you will find some examples how to use the
sound card interface. WaveIO allows to use nearly all features of the sound card hardware:

• Use all supported sampling formats of the sound card
• Allow to use all channels provided by the sound card
• Capture the signals from any sound source, e.g. media player (only non DRM

protected media)
• Use multiple sound cards simultaneously and with different formats
• Control the sound mixer of the devices

The connection between the LabView VI and actual sound hardware is done via the standard
Windows API. So ALL sound systems providing drivers for Windows should be accessible
via the WaveIO interface. This applies to on-board sound, PCI sound cards as well as USB
sound systems.
The parallel operation of multiple sound cards is supported.
Additional VIs allow to control the Windows Mixer in order to select the source and
destination of soundcard, mute or un-mute and monitor/control the volume level.

2. Requirements
The only requirement for the usage of the WaveIO components is currently LabView 7.1 or
above running on a Windows 2000/XP/Vista/7/8 system with at least one soundcard. The
requirements on the system performance are low, but depend on the used parameters. For
high channel counts and high sampling rates the load on the system can be significant.

3. Installation
To use WaveIO just copy the files waveio.dll and waveio.llb into the LabView directory
user.lib. At the next LabView start the Vis should show up in the function palette under User
Libraries. The example VI should be copied to a directory of your choice.

4. Features of the WaveIO Interface
The interface allows the user to define the following parameters (applies to input and output
of sound data):

• Select the soundcard
• Number of I/O buffers (multi-buffering)
• Size of the I/O buffers (given in time or samples)
• Number of channels
• Sampling rate in 1Hz Steps
• Resolution up to 32Bits
• Channel map
• Timeout for watchdog thread
• Sound Mixer control

1

http://www.zeitnitz.eu/waveio

C. Zeitnitz September 2014
4.1. I/O Buffers
Buffers are used to pass the sound data from the application to the Windows API and
vice versa. The total size of the buffer(s) defines the time when the next data have to be
available. Since other applications require some CPU time as well or the application itself
might be busy, multiple buffers allow an asynchronous access.
A quasi real-time access is still possible, because the individual buffer size can be small
(e.g. 50msec). The total buffer time is given by the number of buffers times the time per
buffer. Example: 50msec buffer size and 10 buffers allow for ½ second total buffer time
and should avoid any buffer over- or under-run problem. Buffer times below 20msec
should be avoided!
Short buffer times should be avoided, if system performance is an issue. This is due to
the fact that the provided VIs try to access the DLL within the individual buffer time
(50msec in the above example). So, if the load on the system seems high increase the
buffer time per channel!
The size of the buffers can be defined in terms of the time (in msec) per channel, or in
number of samples per channel.

4.2. Sound Parameters
For the access of the soundcard some parameters have to be specified: Number of
channels, sampling rate and resolution per sample.

Channels
For standard Windows API devices, the selected number of output channels is
automatically mapped to certain speakers and follows the KSAUDIO_SPEAKERS
definition:

• Mono: front center
• Stereo: front left and front right
• 3 channels: Stereo + low frequency
• Quad: front left + right and rear left + right
• 5 channels: Quad + low frequency
• 6 channels: 5.1 system – front left + right, rear left + right, front center, low

frequency
• 7 channels: 5.1 + back center
• 8 channels: 7.1 system – 5.1 + front left-of-center, front right-of-center

The maximal number of handled channels is currently eight.

Sampling Rate
The sampling rate for all channels can be set in 1Hz steps. Most current sound cards are
able to use sampling rates up to 100kHz in 1Hz steps. Only very old cards stick to the
standard rates of 44.1kHz, 22.05kHz etc. Some special cards can handle higher rates up
to 192kHz or above. It has been observed in the past, that the timing of some sound
cards is incorrect, when deviating from the standard settings (e.g. 44.1 kHz).

Resolution
Most current soundcards will work with any resolution between 8Bit and 16Bit and some
cards even with 24Bits. The WaveIO DLL can handle resolutions per sample up to
32Bits. Be aware that at 8 Bit resolution the sound card is working with unsigned values
and for all other resolution with signed samples.

2

C. Zeitnitz September 2014

5. LabView Components of the Interface

5.1. Soundcard Interface VIs

The WaveIO package contains the following VIs in waveio.llb:

• WaveIO_GetInfo: extract the names of devices available for the provided

device type (Play, Record, Loopback, ASIO input, ASIO output)

• WaveIO_Open: opens a sound device for recording or playback. The device
has to be started before actually reading/writing data to it. The open will
return an error if the device is not existing, already open or the selected
sound format is not supported by the device. A watchdog thread is started, if the
specified timeout is greater than zero. The watchdog will close the device, if the no
call to DLL for the specific device is recorded within the given time window. For each
device (and I/O mode) a separate watchdog thread is started.

• WaveIO_Start: starts the opened sound device

• WaveIO_Play: sends the provided data to the soundcard. An error will occur,
if the size of the provided data does not match the buffer setting of the open
command.

• WaveIO_Record: waits and retrieves data from the soundcard.

• WaveIO_Stop: stops the sound device. Required before closing the device.

• WaveIO_Close: closes the sound device.

5.2. WAV File VIs
The DLL contains routines to directly send the received data from the soundcard to a
standard wave file, which can be played with any media player. Example code can be
found in RecordWave_and_WAVFile.vi

• WaveIO_FileOpen: Open a file for a given device. The Soundcard handle of

an opened soundcard has to be passed to the VI. In addition the size of the
used buffers is specified. The size of the buffer allows to record data, which
have been taken some time ago.

• WaveIO_FileStatus: Check the status of a file. Return the current buffer
range stored for recording and returns flags about the status of the file.

• WaveIO_FileStop: Stop the writing of data to the file. This does NOT close
the file yet! A subsequent call of WaveIO_FileRec will continue the writing of
data to the same file.

• WaveIO_FileRec: Start the actual writing of data to the file. The VI requires a
time where to start the writing and a duration. The start time of a given buffer
(nbuf), as returned by FileStatus or WaveIO_Record, is given by
nbuf•(samples/buf)/(sampling rate)•1000msec.
All times given in milliseconds!

• WaveIO_FileClose: Close the file. This will create the actual *.wav file

• WaveIO_AddWaveFileChunk: Adding data (array of bytes) to the header
of the wave file

3

C. Zeitnitz September 2014

Be aware, that the times required by WaveIO_FileRec have to be in sync with the buffer
numbering in WaveIO!

The above Vis call the corresponding routines in the waveio.dll. The dll itself does not call
any LabView libraries.

5.3. Sound Mixer VIs
The DLL contains routines to directly access some features of the sound mixer.
These Vis work for Windows XP as well as Vista/7, even though the sound API
changed completely.
• WaveIO_FindRecordingDevice: Find the recording devices for given

criteria. These are the recording source (Mic, Line …) defined by an input
enumerator and an optional card name, which can be part of the actual card
name. The device returns arrays of names and device IDs.

• WaveIO_FindPlaybackDevice: Find the playback devices for given criteria.
These are the playback destinations (Speaker, Line …) defined by an input
enumerator and an optional card name, which can be part of the actual card
name. The device returns arrays of names and device IDs.

• WaveIO_SelectRecordSource: Select a given source (Mic, Line …)
defined by an input enumerator for the selected device. Optionally the
source can be un-muted and all volume controls set to 100%.

• WaveIO_SelectPlayDestination: Select a given destination (Speaker, Line
…) defined by an input enumerator for the selected device. Optionally the
destination can be un-muted and all volume controls set to 100%.

• WaveIO_Mute: Mute or un-mute the given device (source or destination).
The device type (recording or playback) has to be specified by an
enumerator. The input value “Get State” return true for a muted device.

• WaveIO_Volume: Set or extract the volume of the recording or playback
device. The destination can be specified.

6. Using the Interface
The following picture shows the signal flow when recording sound with the WaveIO VIs. The
Buffer constant specifies two buffers with 100msec per channel for each buffer. The constant
specifying the sound format sets the number of channels to two with a sample rate of
44.1kHz and 16Bit resolution.

The number of the sound
device corresponds to the
Windows enumeration of
the available soundcards
starting at zero! The
names of the
corresponding soundcard
can be retrieved with the
GetInfo Vi.

After the device has been
opened successfully the device has to be started. In the while loop the data are retrieved
from the soundcard. The timeout is set to 1000msec.

4

C. Zeitnitz September 2014
ALL data which are played or
recorded are returned or have to be
provided as a multi-dimensional
array! Each dimension corresponds
to one channel. For mono data the
second dimension should be set to 1
as shown in the sound output
example below. Be aware, that
these code snippets are not
complete!
In order to decouple the actual data
transfer from/to the soundcard from
the rest of the application, the actual interface part should be run in a separate thread and
communicate via queues (for data and commands) with the main application.

7. Enclosed examples
The enclosed examples show the operation of the sound card interface for input and output.

• PlayWave.vi – Simple sine wave generator for multiple channels (default setting for
two channels). You can define the sound card to use and set the format and buffer
parameters. Works for device type selector Play

• RecordWave.vi – Record multiple channels from a single sound card and display the
output in a graph. Selectable sound card and buffer parameters. Works for device
type selector Record and Loopback

• PlayWave_multi_cards.vi – Generator for sine/triangular wave on two sound cards
simultaneously. Selectable sound cards, format and buffer parameters. In the
example both cards use the same parameters, but this can easily be changed.
RecordWave_multi_cards.vi – Record the signals from two cards simultaneously.
Selectable sound cards and buffer parameters.

• RecordWave_and_WAVFile.vi – Record the signal from a single sound cards and
allow to write data to a wave file as well.

• TestMixer.vi – test the mixer functionality (mute, set volume, card selection)

The examples are just meant as a starting point for your own application. Be aware, that the
generation and recording should be decoupled from your application. So start the VIs as
independent tasks (dynamic VI) and transfer the data from the recorder to the application via
a queue. This will ensure, that no buffer over or under runs can occur.

8. Signal sources
The signal source recorded with the WaveIO interface can be selected manually or via the
above Vis in the Windows mixer. Regularly the following sources are available:

• Line-In (stereo)
• Microphone (mono for most soundcards)
• Wave – PC internal sound from a MP3 or media player
• CD-ROM – signal directly connected from the CD-ROM to the soundcard

Sometimes additional inputs like AUX are available.

On most cards only one of the above signals is selectable at a given time. In order to select
the signal source open in the sound mixer the recording control.

5

C. Zeitnitz September 2014

Sound Control of Windows XP

Note for Windows Vista/7/8
Be aware, that in Windows Vista/7 the mixer has been changed completely. Usually the
mixer is not accessible directly, but for each source/destination a separate device is
available. Auto jack connection detection complicates things. This can be disabled by a
registry hack (search the Web for “jack sensing EnableDynamicDevices”).

Loopback-Devices
In addition to the regular signal sources, you will find in the list of input devices something
like “Loopback: Speaker”. This is a pseudo-device, which is capturing the sound send to the
speaker in the Windows mixer. Be aware, that only non DRM protected media can be
captured, otherwise you will receive only silence!

9. Final Remark
This Interface provides an easy access to the soundcard and allows to utilize most of its
features. Some limitations exist:

• Only PCM data are supported by the current DLL. In principle other codecs could be
interfaced, but this would require some serious re-write of the code.

• Some parameters have to be set manually in the properties of the device. For this
you need to access the Windows sound properties and mixer. This can be open the
from Labview via the shell command VI:

o Windows XP: “sndvol32”. This will bring up the volume control and the
selector for the signals that are mixed for the speakers. Adding the option for
recording (sndvol32 /r) will start the recording control as seen above

o Windows Vista/7/8: “control.exe mmsys.cpl,,0”
The trailing number selects the device type 0: playback, 1: recording

If you have any additional questions please contact: info@zeitnitz.eu

10. Term of Usage
This Software is provided as is and can freely be distributed for private and non-commercial
usage.
In case of a commercial usage a license is required. Please obtain the license from
https://secure.shareit.com/shareit/product.html?productid=300424978
or contact info@zeitnitz.eu

Troubleshooting
The code has been tested with quite a variety of soundcards, but nevertheless problems
could show up on some cards. Hang ups in Windows can cause the code to run into the
timeout and buffer over- and underruns can occur. In the following some hints what to do
under some standard conditions.

Sound format is not supported
Any soundcard I know supports 44.1kHz sampling rate at 16Bit resolution and two channel
input/output. So if the interface complaints even at these settings, there is definitely

6

mailto:info@zeitnitz.eu
https://secure.shareit.com/shareit/product.html?productid=300424978
mailto:info@zeitnitz.eu

C. Zeitnitz September 2014
something wrong with the sound driver! Other formats, especially higher channels counts
require the corresponding settings in the driver software to be consistent with the selected
value. E.g. if you try to output 6 channels on a 5.1 system you have to enable all channels in
the soundcard control.

Buffer overrun/underrun occurred
Buffer over- or underruns occur, when the time between calls to the Windows API are in
excess of the total buffer time per channel (time per buffer time the number of buffers). This
can happen, when some other process takes up too much CPU time, or the machine is busy
with disk access.
An increase of the total buffer time can help to remedy this problem. The number of buffers
should be at least two, but a number of four buffers is more reliable. Higher numbers are
usually not necessary. If the load on the system is high as well, increase the size of samples
per channel in order to reduce the number of calls to the DLL.

Device already open
If a device has not been closed correctly and you try to re-run your application you might get
this error. This is due to the fact, that LabView does not unload the DLL when stopping the
VI. You’ll have to close LabView completely and re-start it in order to get rid of this problem.
If you experience this problem frequently you can allow the DLL to start a watchdog thread.
This thread will close the device automatically after the given timeout period. Per default no
watchdog is started. The watchdog thread is started for each successfully opened device, if
the specified time (wired to the open VI) is greater than zero.

Input data do not match Format
The WaveIO_play VI will return this error if the number of samples in the data array does not
match the sound format specified when the device was opened. If this error shows up,
please check, that you provide sufficient values: Multi-dimensional array with a total size of
number of samples per channel times the number of channels.

My old LabView program is no longer working with the new WaveIO
version
Some VIs have a slightly changed interface, so you have to re-link for example the
WaveIO_Open VI to the new version in WaveIO.llb, since some new options have been
added

7

	1. Introduction
	2. Requirements
	3. Installation
	4. Features of the WaveIO Interface
	4.1. I/O Buffers
	4.2. Sound Parameters
	Channels
	Sampling Rate
	Resolution

	5. LabView Components of the Interface
	5.1. Soundcard Interface VIs
	5.2. WAV File VIs
	5.3. Sound Mixer VIs
	6. Using the Interface
	7. Enclosed examples
	8. Signal sources
	Loopback-Devices

	9. Final Remark
	10. Term of Usage
	Troubleshooting
	Sound format is not supported
	Buffer overrun/underrun occurred
	Device already open
	Input data do not match Format
	My old LabView program is no longer working with the new WaveIO version

